Problem 1. Problem: Prove that the 'cross" (in algebraic geometry, the 'normal crossing') $x y=0$ is not a topological manifold
Problem 2. Prove that the cone $x^{2}+y^{2}=z^{2}, z \geq 0$ is a topological manifold but is not a smooth embedded manifold in Euclidean 3 -space.

Problem 3. . Show that $u=x y, v=y$ is not a good change of coordinates near the origin of the xy plane, while $u=(x+.005)(y+.001), v=y$ is a good change of coordinates near the origin.
Problem 4. Prove that $\exp : s o(3) \rightarrow g l(3)$ is a smooth map and that its rank is 3 at the origin. Here \exp is the matrix exponential, so(3) is the vector space of 3 by 3 skew-symmetric matrices and $g l(3)$ is the space of all 3 by 3 real matrices.
Problem 5. Prove that the image of \exp from the previous problem is $S O(3) \subset$ $g l(3)$
Problem 6. View x as the affine coordinate for $\mathbb{R P}^{1}$ so as to identify $\mathbb{R}^{1}{ }^{1}$ with $\mathbb{R} \cup\{\infty\}$. Show that the vector field $\frac{\partial}{\partial x}$ on the open set $\mathbb{R} \subset \mathbb{R} \mathbb{P}^{1}$ extends to a smooth vector field on all of $\mathbb{R} \mathbb{P}^{1}$. Does this vector field vanish at ∞ ?
Problem 7. Consider the vector field $V(x)=x^{2} \frac{\partial}{\partial x}$ on \mathbb{R}. Show that it is incomplete, by showing solutions blow up in finite time.

Problem 8. Continuing with the notation of the previous two problems, so that $\mathbb{R} \mathbb{P}^{1} \cong \mathbb{R} \cup\{\infty\}$, show that the vector field $V(x)$ IS complete when viewed as a vector field on $\mathbb{R P}^{1}$.
Problem 9. Compute stereo projection $S^{2} \backslash\{p t\} \rightarrow \mathbb{R}^{2}$ and its inverse. [See Lee, problem 1.5]
Problem 10. For any point $x_{0} \in S^{2}$ we have the stereo projection map $\phi_{x} \in$ $S^{2} \backslash\left\{x_{0}\right\} \rightarrow x_{0}^{\perp}$.

For $x=N$ and $x=S$ we have $x^{\perp}=\mathbb{R}^{2}$, where $N=(0,0,1), S=-N$ and \mathbb{R}^{2} denotes the xy plane. Compute the overlap map $\phi_{S} \circ \phi_{N}^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
Problem 11. Prove that multiplication $(A, B) \mapsto A B$ is a smooth map $S O(3) \times$ $S O(3) \rightarrow S O(3)$.

HINT: first prove the analogous assertion for multiplication on the space $g l(3)$ of all 3 by 3 real matrices.
Problem 12. Prove that inversion $A \mapsto A^{-1}$ is a smooth map $S O(3) \rightarrow S O(3)$.
HINT: first prove the analogous assertion for the space of invertible 3 by 3 real matrices.

Problem 13. Let

$$
E_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Prove that $X(g)=g E_{3}$ defines a smooth vector field on $S O(3)$.
Problem 14. Prove that the map $\pi: S O(3) \rightarrow S^{2}$ given by $\pi(g)=g e_{3}$ is a submersion.
Problem 15. Let $S O(2) \subset S O(3)$ be the rotations about the z- axis. Prove that for each $g_{0} \in S O(3)$ the map $F_{g_{0}}: S O(2) \rightarrow S O(3)$ given by $F(\lambda)=g_{0} \lambda$ is an embedding.

Problem 16. Using the notation of the last two problems, prove that $\pi(g)=\pi\left(g_{0}\right)$ if and only if $g \in \operatorname{Im} F_{g_{0}}$. In other words, π has fibers the circles which are the image of the $F_{g_{0}}$ - the $S O(2)$ cosets.
Problem 17. In using the IFT to prove that $S O(3)$ is a manifold we used the function $F: g l(3) \rightarrow \operatorname{sym}(3)$ given by $F(A)=A A^{t}$. Prove, by hand, that Sard holds for F : almost every value of F is regular.

Hint: show that if $c \in \operatorname{sym}(3)$ is invertible then it is a regular value for F.
Problem 18. Describe a vector field on the 2 -sphere which is nowhere zero along the equator

Problem 19. Describe, analytically, a vector field on the 2 -sphere whose only zeros are at N and S .

Problem 20. . Let A be a symmetric n by n real matrix. Show that $f([v])=$ $\langle A v, v\rangle /\langle v, v\rangle$ is a smooth function on the projective space $\mathbb{R}^{P^{n-1}}$. Relate the critical values of f to the eigenvalues of A. Here $[v]=\operatorname{span}(v) \in \mathbb{R}^{n-1}$ for $v \neq 0$ a vector in \mathbb{R}^{n}.

Bracket Problems

Problem 21. Prove or disprove: there is a smooth vector field v on the plane such that $\left[x \frac{\partial}{\partial y}, v\right]=\frac{\partial}{\partial x}$
Problem 22. Find a radial solution $f=f(r)$ to the 1 st order linear $\operatorname{PDE}\left(x \frac{\partial}{\partial x}+\right.$ $\left.y \frac{\partial}{\partial y}\right) f=3 f$ in the plane.

Riemannian geometry problems

Problem 23. Write down a diffeomorphism between $S O(3)$ and the unit tangent bundle to S^{2}.

Problem 24. Describe a diffeomorphism between $S O(3)$ and $\mathbb{R P}^{3}$.
Problem 25. Let $d s^{2}=\Sigma g_{i j}\left(x^{1}, x^{2}, x^{3}\right) d x^{i} d x^{j}$ be a Riemannian metric on the 3 dimensional disc. Show that there exist coordinates u, v, w centered at the origin such that $d s^{2}=d u^{2}+d v^{2}+d w^{2}+\Sigma \beta_{i j}(u, v, w) d u^{i} d u^{j}$ where the $\beta_{i j}$ are smooth functions which all vanish at the origin, and where, for notational convenience I've set $u^{1}=u, u^{2}=v, u^{3}=w$.

LIE BRACKET and LIE DERIVATIVE PROBLEMS.

Problem 26. A non-vanishing one-form α defines a hyperplane field $D \subset T Q$ by $D_{q}=\operatorname{ker}(\alpha(q))$. Suppose that V is a vector field on Q with flow Φ_{t}. Prove that $L_{V} \alpha=f \alpha$ for some function f if and only if the flow of V preserves D, i.e: $\Phi_{t}^{*} D=D$

Problem 27. Let $\alpha=d z-y d x$, a one-form on \mathbb{R}^{3}. Find nonvanishing vector fields V on \mathbb{R}^{3} such that $L_{V} \alpha=0$. Find other vector fields such that $L_{V} \alpha=f \alpha f \neq 0$ a function.

Problem 28. Repeat the previous problem with the one-form $\alpha=d z$.

